EFFICIENT SYNTHESIS OF ACETOXYFIMBROLIDES AND BECKERELIDES ANALOGS

Hiyoshizo KOTSUKI,* Mitsugu MONDEN, and Masamitsu OCHI*
Department of Chemistry, Faculty of Science, Kochi University,
Akebono-cho, Kochi 780

An efficient synthesis of acetoxyfimbrolides and beckerelides analogs has been developed via peracid oxidation of 2-methyl-4-(l-acetoxy-butyl) furan as the key synthetic step. Antimicrobial activity of the products has also been tested.

Acetoxyfimbrolides $\underline{1}$ isolated from the red alga $\textit{Delisea fimbriata}^{1)}$ and related beckerelides $\underline{2}$ isolated from the red alga $\textit{Beckerella subcostatum}^{2)}$ have been

reported to exhibit antimicrobial activities. The interesting γ -methylenebutenolide skeleton of the former compounds has elicited considerable attention from synthetic chemists. We report herein an efficient synthetic approach to acetoxy-fimbrolides and beckerelides via oxidation of 2,4-disubstituted furan derivatives as the key synthetic step as outlined in Scheme I.

In order to realize our synthetic scheme, a new synthetic method of the requisite 2,4-disubstituted furan derivatives was developed as follows. Formylation of methyl levulinate dimethyl acetal $\underline{3}$ and subsequent hydrolysis afforded the very sensitive formyl ketone $\underline{4}$ in 88% crude yield. Treatment of $\underline{4}$ with Amberlyst H-15 in refluxing benzene resulted in smooth cyclization to methyl 5-methyl-3-furoate $\underline{5}$, bp 72°C/25 mmHg (lit $\underline{4}$) 80-83°C/29 mmHg), in 56% yield. Conversion of $\underline{5}$ to 3-formylfuran $\underline{6}$ followed by treatment with Grignard reagent and acetylation gave the desired furan derivative $\underline{7}$ in 43.3% overall yield.

Reaction of the furan 7 with 2 equiv of m-chloroperbenzoic acid in the presence of 2 equiv of NaHCO $_3$ in CH $_2$ Cl $_2$ for 4.5 h at room temperature gave a diastereomeric mixture of hydroxybutenolides 8, beckerelides analogs, in 86% yield. The dehydration of 8 was accomplished by the treatment with phosphorus pentoxide 5) for 1.5 h in refluxing benzene to afford almost pure dehalogenated acetoxyfimbrolide ($\frac{1}{2}$) $\frac{1}{2}$ in 70% yield; IR (Neat) 1780, 1740, 1650, 1620, 1235 cm $^{-1}$; 1 H NMR (CDCl $_3$) 3 0.94(3H, t, J=7 Hz), 1.2-2.0(4H, m), 2.10(3H, s), 4.85(1H, d, J=2 Hz), 5.18(1H, d, J=2 Hz), 5.65(1H, t, J=7 Hz), 7.15(1H, s); m/z 211(M^+ +1). Bromination of 9 in

^aLDA, THF, -30°C, then HCOOEt, then dil HCl. ^bAmberlyst H-15, C_6H_6 , reflux, 2 h. ^cLiAlH₄, ether, then PDC, CH_2Cl_2 . ^dn-PrMgI, ether, then Ac₂O-DMAP-Py. ^eMCPBA (95% assay, 2 equiv), NaHCO₃ (2 equiv), CH_2Cl_2 , room temp, 4.5 h. ^fP₂O₅, C_6H_6 , reflux, 1.5 h. ^gBr₂, hydroquinone (cat.), CH_2Cl_2 , 0°C, then DBU, -10°C, 0.5 h.

CH₂Cl₂, ⁶⁾ followed by treatment with 1,8-diazabicyclo[5.4.0]undec-7-ene gave a high yield (95%) of the monobrominated derivative (\pm)-10; ¹H NMR (CDCl₃) δ 0.91(3H, t, J=7 Hz), 1.2-1.9(4H, m), 2.07(3H, s), 5.60(1H, t, J=7 Hz), 6.03(1H, s), 7.13(1H, s). ⁷⁾

The debromoacetoxyfimbrolides $\underline{9}$ and $\underline{10}$ showed a strong antimicrobial activity against some fungi while $\underline{8}$ did not exhibit such an activity. $\underline{8}$)

This work was supported in part by a Grant-in-Aid for Scientific Research No. 56470026 from the Ministry of Education, Science and Culture.

References

1) R. Kazlauskas, P. T. Murphy, R. J. Quinn, and R. J. Wells, Tetrahedron Lett., 1977, 37; J. A. Pettus, Jr., R. M. Wing, and J. J. Sims, ibid., 1977, 41. 2) K. Ohta, Agric. Biol. Chem., 41, 2105 (1977). 3) Y. S. Rao, Chem. Rev., 76, 625 (1976); G. Pattenden, Fortschr. Chem. Org. Naturst., 35, 133 (1978); M. Yamamoto, Yuki Gosei Kagaku Kyokai Shi, 39, 25 (1981). 4) Y. L. Gol'dfarb, Y. L. Danyushevskii, and M. A. Vinogradova, Dokl. Akad. Nauk SSSR, 151, 332 (1963); Chem. Abstr., 59, 8681f (1963). 5) Cf. A. G. Schultz and J. D. Godfrey, J. Org. Chem., 41, 3494 (1976). 6) Bromination of 9 has taken place only at the terminal double bond. 7) Judging from the H NMR result, the dehydrobromination proceeds stereoselectively. The stereochemistry of 10 was tentatively assigned as the less crowding structure of Z-configuration. 8) For example, some minimum inhibitory concentrations of $\underline{9}$ and $\underline{10}$ determined by dilution method are as follows. $\underline{9}$: Saccharomyces cerevisiae (100 µg/ml), Candida utilis (25 µg/ml), Sclerotinia libertiana, (12.5 µg/ ml), Mucor mucedo (12.5 μg/ml), Rhizopus chinensis (25 μg/ml), Aspergillus niger (50 μg/ml), Penicillium crustosum (100 μg/ml); 10: Saccharomyces cerevisiae (100 μg /ml), Candida utilis (100 µg/ml), Sclerotinia libertiana (6.25 µg/ml), Mucor mucedo (25 μg/ml), Rhizopus chinensis (12.5 μg/ml), Aspergillus niger (25 μg/ml).

(Received April 18, 1983)